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AN HP-ADAPTIVE METHOD IN SPACE AND TIME 

FOR PARABOLIC SYSTEMS* 

JOSEPH E. FLAHERTY! AND PETER K. MOORE* 

Abstract. We describe an adaptive method-of-lines /zp-refinement algorithm in 

space and time for one-dimensional vector systems of parabolic partial differential 

equations. Solutions are calculated using Galerkin's method with a piecewise- 

polynomial hierarchical basis in space and singly-implicit Runge-Kutta (SIRK) 

methods in time. A posteriori estimates of the local spatial and temporal discretization 

error are used with a priori error estimates to control spatial and temporal enrichment. 

Computational results are used to compare and verify the utility of several variants of 

the basic /zp-refinement procedure. 

Key words, adaptive refinement, finite-element methods, a posteriori error estima- 

tion. 

MSC subject classifications. 65M20, 65M50, 65M60 

1. Introduction. Basic adaptive strategies for the solution of parabolic partial 

differential equations (PDEs) include method-of-lines (MOL) approaches with spatial 

mesh refinement or coarsening (/i-refinement) [1, 3, 5, 13, 18], mesh motion (r- 
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refinement) [1, 16], and order variation (p-refinement) [3, 14, 18]. Solution "enrich- 

ment indicators," which are frequently estimates of local spatial discretization errors 

[1-3, 5, 18, 21], are obtained from preliminary solutions and used to identify portions 

of the domain in need of additional resolution. Some combination of the three basic 

enrichment strategies is used to alter the approximation and recursively calculate 

improved solutions until specified accuracy criteria have been satisfied. The focus to 

date has been on h- and /--refinement [1-3, 5, 13, 16, 18] with little attention devoted 

to p- and /zp-refinement [3, 19]. Since the latter schemes have been remarkably suc- 

cessful for elliptic problems it is natural to examine their utility when solving parabolic 

systems. With few exceptions [17], nothing has been done to coordinate spatial and 

temporal enrichment and we address a combined space-time adaptive /zp-refinement 

strategy herein. 

We consider vector systems of M parabolic equations of the form 

u, + f{x,t,u,xyx) = D(je,f,u,ux)x,   x e Q. s {c,d\    t > 0, (1.1a) 

U(JC,0) = UO(X),   x£Q, (1.1b) 

u^x ,t) = ct(t)   xedQf, (1.1c) 

Df(jc,f,11,11,) = ct(t),   x € dQl1,   i = 1, 2, •••, M,   t > 0. (Lid) 

The boundary dQ = 8ßf + dCl^ is divided component-wise, / = 1, 2, •••, M, into sets 

where essential (£) and natural (AO data is applied. Additional restrictions must be 

placed on the functions f and D to ensure that (1.1) is a well-posed parabolic problem 

with a locally-isolated solution. 

We solve (1.1) using a finite element Galerkin MOL technique with a piecewise 

polynomial hierarchical spatial basis of degree p ^ 1 and a singly implicit Runge- 
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Kutta (SIRK) method in time (§2). SIRKs are well-suited to adaptive computation 

which requires frequent restarts of the temporal integration due to spatial enrichment, a 

consideration that would be even more important were local temporal refinement [18] 

used instead of a MOL. SIRKs additionally have high stage order that eliminates 

order reduction [11, 21] and error estimates of each stage that, with stability considera- 

tions, permit acceptance of solutions at intermediate stages whenever the final solution 

lacks the requisite accuracy [20]. 

A posteriori temporal (§3.1) and spatial (§3.2) error estimates are used to guide 

the adaptive /zp-refinement algorithm as described in §4. A temporal order and step 

selection strategy (§4.1) is used to develop a base adaptive /ip-refinement strategy and 

several variants (§4.2). Four examples are presented in §5. A comparison of the spa- 

tial /zp-spatial refinement strategies of §4, an /z-refinement strategy with various fixed 

orders (§4.2), and a p -refinement strategy with uniform spacing is made using a linear 

example. Burgers' equation is used to compare strategies for determining initial 

guesses for Newton's method and for comparing spatial Zip-refinement strategies. A 

comparison of spatial /zp-refinement strategies is also made using a Brusselator with 

some slight diffusion. The Brusselator [15] and a shear band model [12] demonstrate 

the effectiveness of our method on realistic nonlinear systems. A brief discussion of 

our results is presented in §6. 

2. Discretization. The Galerkin form of (1.1) consists of determining 

u(x ,t) e Hj±(Q.) x (t > 0) such that 

(u, ,v) + (f,v) + (D,v^) = Dr v I        ,   for all v € //Q1
 ,   t > 0, (2.1a) 

xedn 

(u,v) = (u0,v),   for all v G //Q1
 ,   t = 0, (2.1b) 

where 



-4- 

(u,v) = \uT\dx. (2.1c) 

As usual, the Sobolev space H\Q) consists of functions having square integrable first 

derivatives and the subscripts E and 0 further restrict functions to satisfy (1.1c) and a 

trivial version of (1.1c), respectively. 

Introduce a partition 

AQ := {c=xQ<xl< •■■ <xN=d} (2.2) 

of Q. into N subintervals and approximate H1 by a finite-dimensional subspace S^ 

where SA" consists of piecewise polynomials whose restriction to (^_lyc,) are polyno- 

mials  of degree pt £ 1, / = 1, 2, ■••, N.   Consider a finite element approximation 

U(x ,t) £ S£
AQ
 of U(JC,0 G H£ having the form 

U(x,f) = IUn(t»„(i) + £ P±Uik(t)4>ik(x) 
j=0 i=lfc=2 

(2.3a) 

where here, and throughout this paper, Galerkin coordinates are identified by an over- 

bar. The functions 

M*)H 
(x - x^Kxi - x^),   x^ £ x < xt 

(xi+1 - x)l(xi+1 - *;),   xt <> x < xi+l,   i - 0, 1, •••, N,   k = 1, 

0, otherwise 

(2.3b) 

and 

* 
/v\ . J2k- 1 

• 
2 

ik\x) ■ ~ V      2 xi ~ xi-l 

f ^j,*-l(v)rfv'   */-l ^* <*i 
jt,-i 

0, otherwise     : 

i = 1, 2, ---,//,   k =2,3,-, Pi,        (2.3c) 

where Pijc(x) is  the  kth -degree Legendre polynomial  scaled to the subinterval 
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[xi_l,xi], comprise a hierarchical basis for 5     [25]. 

In a similar manner, we approximate v by VG S0
a; thus, replacing u and v in 

(2.1) by U and V, we determine V(x,t) as the solution of the ordinary differential sys- 

tem 

(U„V) + (f,V) + (D,VX) = DrV I        ,   for allV£ S0
A°,   t > 0,       (2.4a) 

X eda 

(U,V) = (u0,V),   forallVeS0
An,   t = 0. (2.4b) 

Explicit utilization of (2.3) reveals that (2.4) has the form [20] 

MÜ' = F(Ü),   r>0,   MÜ(0) = h(uo), (2.5a,b) 

where M, F, and h are the mass matrix, load vector, and the initial load vector, respec- 

_ N 
tively; U(r) is a vector of Galerkin coordinates of length n = M (N + 1 + £(Pi ~" 1)) 

i=l 

on S£ "; and ()' denotes total differentiation. 

Implicit numerical methods are generally preferred for the temporal integration of 

systems like (2.5) that arise from parabolic problems. Stiffness arises in a MOL for- 

mulation due to the spatial discretization, so backward difference formulas (BDFs) are 

a common solution technique [1-3, 5, 17]. SIRKs, introduced by Butcher [9] and Nor- 

sett [22] and extended by Burrage [7], offer A -stability in combination with high-stage 

order and Jacobians of equal dimension to those of multistep methods; hence, they 

may provide an attractive alternative to BDF methods. We depart from Butcher's [9] 

SIRK procedure by approximating U(f) rather than U'(0 for the time step [a,a + h] 

by an expression of the form 

0(0 « W(0 = £ W,vi(0.   Vi(0 = t ^(^-r, (2.6a,b) 
/=0 m=0 " 
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where the coefficients alm, I, m = 0, 1, ••-, s, are given by Moore and Flaherty [20], 

W/=W(a+c/Ä), / = 1, 2, •••, s, and W0 = W(a). Spatially-dependent functions 

W(x,t) and W,(x), / = 0, 1, —, s, may be defined by using W(f) and W,, 

/ =0, 1, •■-, s, respectively, in conjunction with (2.3a-c). 

The parameters ct are selected as A^, / = 1, 2, •••, 5, where ^ is the /,/! root of 

Ls(t), the Laguerre polynomial of degree s. As described by Burrage [7], choosing X 

as 1/^*, 1 <> I* ^ s, can produce a method with favorable stability and discretization 

error properties. Using properties of Laguerre polynomials, Butcher [9] introduced the 

transformation 

[W1,W2,-,WJ]
r = f [W1,W2,-,WJr 

where f is the tensor product of T, 

(2.7a) 

Ty^Lj.&t),    i,j = 1,2, -,s, (2.7b) 

with an/jx« identity matrix that reduces the linearized version of (2.5a, 6) to the 

form [20] 

M-AÄF, 

M 

M 

u 0 

M-XhF u 

M 

0 AWJ Ö! 

0 AW2 H2 

-MIFQ AW, 
.fi*. 

(2.7c) 

Hi MW0 M   0   • •   0 W! Fi 

H2 

. = - 

MW0 

+ 
M M • •   0 w2 

-Xh 
F2 

H5 MW0 M M  • M _w, F x s 

(2.7d) 

Thus, the Newton corrections AW, to the transformed variables W, ,/ = 1, 2, •••, s, 
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are determined by a simple block backward substitution involving s linear systems. 

Only one Jacobian is involved in all Runge-Kutta stages and inner products involving 

the lower diagonal entries in (2.7c,d) may be accumulated stage by stage. Addition- 

ally, the terms MW,, / = 1, 2, ••-, s, in (2.7d), need not be evaluated after the initial 

Newton iteration since corrections of MAW,, / = 1, 2, -, s, are generated by (2.7c). 

Inverting (2.7b) to obtain W,, / = 1, 2, •••, s, is straightforward [9]. By using the for- 

mulation (2.6-7) instead of Butcher's [9] original approach, we avoid solving an addi- 

tional linear system by determining W directly rather than obtaining it from F. 

With I = 1/^., 1 <; /* £ s, we have cr = 1; hence, W(a+/z) = Wr is regarded 

as the final-stage solution that is propagated to the next time step if accuracy condi- 

tions are satisfied. All other solutions W/5 / = 1, 2, •••, /* - 1, /* + l, ••-, s, furnish 

intermediate results. Moore and Flaherty's [20] stability analysis permits the accep- 

tance of solutions at some intermediate stages for / < /*. This is particularly useful 

when the discretization error of Wr is larger than prescribed but that of W,, / < /*, is 

acceptable. Those stages that satisfy Moore and Flaherty's [20] stability conditions 

and, hence, may be propagated forward are called "acceptable stages." Acceptable 

stages with / < /' and, hence, c{ < 1 are referred to as "partial steps" while "full 

steps" are taken when / = /*. For reference, we include the set of acceptable stages, 

r,, J = 1, 2, •••, 8, in Table 2.1 [20]. For the adaptive algorithm of §4.2 it will also 

be useful to define the set of "adaptive stages" Ws, s = 1, 2, -, 8, as presented in 

Table 2.2. 

s l 2 3 4 5 6 7 8 
r, {i} {1,2} {1,2} {1,2} {2,3} {2,3} {2,3,4} {2,3,4} 

Table 2.1. The set Ts of potentially acceptable stages for a 5-stage SIRK 
s = 1, 2, •••, 8. 



s 1 2 3 4 5 6 7 8 
x s {1} {1,2} {1,2,3} {1,2,3} {2,3,4} {2,3,4} {2,3,4,5} {2,3,4,5} 

Table 2.2. The set ^ of adaptive stages for a s-stage SIRK, s = 1, 2, ••% 8. 

3. Error Estimation. The adaptive algorithms of §4 utilize estimates of the total 

error e = u - W, the spatial error eT = U - W, and the temporal error e' = u - U. 

Procedures for estimating the total error [2, 21] are reviewed briefly for completeness. 

All estimates are calculated using the root-mean-square norm [6] 

/ 1  M He1 |li2 

IMU - -y -^E {ato[i + rtoliWilli)2 (3-D 

where el is the ith component of e, and atol1 and rtol1, i = 1, 2, ••■, M, are 

prescribed absolute and relative error tolerances, respectively. Temporal error estima- 

tion is the subject of §3.1 and spatial error estimation follows in §3.2. 

3.1. Temporal Error Estimation. Temporal error estimates, which control step 

and order selection, can be obtained for all stages [8, 20] by embedding. The addi- 

tional stage 

Ws+1 = W0 - i[cs+1L'k(cs+1/X)lk + XL^JX)] [£ 1/A.W, - WJ + hXF(\Vs+1), 

(3.2) 

furnishes higher-order temporal solutions that may be subtracted from existing solu- 

tions to obtain error estimates 

||e'(-,0+c,/OIU « IIE/OIU = IHWC|A)(W1+10 - W0(-))IU, 

/ = 1, 2, •••,j, (3.3) 
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of all stages [20]. 

Estimates of the scaled derivatives \\hs+kdf+bU(-,a + h)\\rm, k = -1, 0, 1, 2, are 

needed for the order selection strategy described in §4.1. Estimates of 

Ä*-13/-1U(-,fl + h) and hsdß](-,a + h) are obtained by writing (2.6) in the form [20] 

W(0 = WQL, (QIX) + £ W, [L^QIX) - Ls (Q/X)],   6 = t-=^-      (3.4a,b) 
*-i h 

and differentiating s - \ and s times, respectively. 

Results of Burrage et al. [8] imply that 

E/.(0 = -h [£ (bj ~ bj)V(Wj) - 6,+1F(W,+1)] (3.5a) 

where bj, j = 1, 2, •••, s, and bj, j = 1,2, ■■■, s + I, satisfy the consistency condi- 

tions 

tbJcJ = -j-,   l=0,l,-,s-\,   '£bjClj = -±-t   l=0,l,-,s. 
j = l l   +   l Jml l   +  L 

(3.5b,c) 

Using Taylor's series and (3.5b,c), it follows that 

*[£ (bj - bj)z(a + cjh) - bs+1z{a + cs+lh)] 

^zbXaW+ijjlibjCJ-y^} (3.6) 

for any function z(r)€ Cs+1[a,b].   Extending (3.6) to vector systems with z = Ü' 

yields [8] 

Hs+l\jj>s+l\a +h) = -- — + 0 (Hs+2) (3.7) 
i.bjCJ-lKs+1) 

where H = Xh. 

The final scaled derivative Hs+2\jj?+2\a + h) is estimated by taking two full 
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Steps on the same spatial mesh with the same temporal order and time step and using 

(3.7) to show that [8] 

_,  „                 A*+2VE/.(a +h)s\ 
Hs+2VJ>s+2\a +h) = + 0 (Hs+3) (3.8a) 

ZbjCJ-lKs+l) 

where 

VE/.(a + h) = I/, (a + h) - I/, (a). (3.8b) 

3.2 Spatial Error Estimation.   Estimates of the spatial and total discretization 

errors are obtained by computing two additional solutions 

Yk(x,t)=W(x,t) + Ek(x,t),    E^CcO^E'CcO + EE^CcA   k = 0, 1, 
/=o 

(3.9a,b) 

where E* and E*^ are, respectively, total and spatial error estimates of each solution 

Y*, k =0, 1. The temporal error estimate E', obtained as described in §3.1, is used 

for all acceptable SIRK stages, otherwise it is set to zero. The complexity of obtaining 

spatial error estimates may be reduced by using nodal superconvergence [2, 21]. Thus, 

errors on An are neglected and spatial errors are approximated by local p-refinement 

with 

E^(x,r) = £-Effy^W*),   * = 0, 1, (3.10a) 

by replacing u in (2.1) by Y*, k =0, 1, to obtain the local Galerkin problems 

(Y*,V)(. + (fC*,f,Y*,Y*),V), + (D(x,r,Y*,Y*), =0,   for all V = s^+k+h(xrx^\ 

re (a,a + csh),   i = 1, 2, -,N,        (3.10b) 

Yk(x,a) = W(x,a),   Jfc=0,l. (3.10c) 

The problems (3.10b,c) are solved for Y*, k = 0, 1, using the same s-stage SIRK that 

was used to obtain the finite element solution W.   The local spaces 50' ' *'~l 
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consists of polynomials having maximal degree pt+k+l, fc = 0, 1, on (J:I-_1^C,-)» 

/ = 1, 2, ■•■, N. The local L2 inner product (u,v); is defined according to (2.1c) with 

Q. replaced by (x,_lycf). 

The total error ||e(-,a + Cjh)\\rms, is approximated by ||E°(-,a + Cjh)\\rm, j £ Ts; 

however, the spatial order selection strategy (cf. §4.2) requires estimates of 

\\EXJC(;a + Cjh)\\rmsJ, k = -2, -1, 0, 1, j e Ws, i = 1, 2, ■••,//. The estimates E*'° 

and Exj are computed using (3.9,10). The errors Ex,_1 and E* ~2 of solutions one and 

two degrees lower, respectively, than the current approximation on each element, are 

obtained naturally from the pfh and pt - Ist terms of the hierarchical series (cf., e.g. 

(2.3)). This approach differs from the order extrapolation techniques for elliptic prob- 

lems of Szabo [26] and Zienkiewicz et al. [29]. Unlike these procedures, availability 

of Y1 provides us with a rational basis to change orders from piecewise linear to 

piecewise quadratic solutions. 

4. Adaptive Strategies. A top-level pseudo-C description of an adaptive MOL 

hp-refinement algorithm for solving (2.1) on Qx(0,T] is presented in Figure 4.1. Input 

to this procedure, called MOLhp, consists of T and absolute and relative error toler- 

ance vectors atol and rtol, respectively. The core of MOLhp is the integration of (2.1) 

for a single time step of duration h. The temporal (§4.1) and spatial (§4.2) hp- 

refinement strategies are based on the order and step selection strategy used within the 

BDF code DASSL [6]. With both temporal and spatial enrichment, the order is chosen 

prior to selecting the step size. 

4.1 Adaptive Strategies in Time. Current techniques for selecting the temporal 

order and step size (cf., e.g., Brenan et al. [6]) on a subinterval (a,a+h] utilize esti- 

mates of the four scaled derivatives \\hs+kdf+kU(;a)\\rms, k - -1, 0, 1, 2, where s is 

the order of the previous step (cf. §3.1). The order is decreased or increased by one if 

the sequence of scaled derivatives at different orders is, respectively, decreasing or 
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MOLhp(atol, rtol, T) 
{ 
a =0; 
Generate an initial mesh An and select an initial time step with s = 1; 
while (a+h <.T) 

{ 
Solve (2.5) on (a,a+h]xAn using a J-stage SIRK to obtain the ap- 
proximate solution W(x,a+h), the total error estimates E°(x,a + cth), 
I € Fs, and the spatial error estimates Ex,k(x,a + cth), 
£=-2,-1,0, 1,/e ¥,; 
Use ExJc(x,a + cth), k = -2, -1, 0, 1, / £ %, to obtain the elemental 
spatial error indicators If *, i = 1, 2, •••, Af, £ = -2, -1, 0, 1; 
Determine /max = max / such that ||E/^J|rffLS <> 1; 

If ('max > 0) 
a += c,   h; 

'max 

Calculate a new time step h and SIRK order s; 
if('max<0 

Generate a new grid An based on the refinement indicators; 
else 

Generate a new grid Aß if significant refinement or coarsening is 
needed; 

} 
} 

Figure 4.1.  Pseudo-C description of the adaptive MOL algorithm with local 
hp-refinement for solving (2.1) on ßx(0J]. 

increasing [6]. Once the order has been selected, the appropriate scaled derivative is 

used with the local discretization error formula to select the time step so that the tem- 

poral error estimate is less than 1/10 of the total error estimate [24]. A factor of 1/10 

produced much more reliable results (cf. Example 5.4) than our previous factor of 1/3 

[19]. If the temporal error estimate is too large, spatial error estimates may be unreli- 

able due to inaccurate integration of (3.10). Thus, the time step is reduced without 

spatial adaptivity when the temporal error estimate is more than 20% of the total error 

estimate and the total error estimate is more than 0.8 
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Interpolation provides estimates of the solution at times other than a+cth, 

I = 1, 2, •••, s, which may, e.g., be used to compute initial guesses for Newton's itera- 

tion. The interpolation strategy used in the SIRK code STRIDE [8] satisfies (3.4) [20] 

and is denoted as WßßC(0- High-order SIRK formulas require function evaluations 

at times that are well in advance of t = a + h for the higher stages. Thus, divergence 

of Newton's iteration (cf. (2.7)) can be expected without close initial guesses. This 

difficulty prompted Moore and Flaherty [20] to consider the reduced-order formula 

\VMF(a + Qh) = £ W.L^OA). (4.1) 

Unfortunately, neither WßßC(r) nor WMF(t) produced reliable solution estimates at 

advanced SIRK stages. Solutions W(0 at t = a + Cjh, I = 1, 2, •••, s, appear to con- 

verge more rapidly than elsewhere on t > a. This suggests a modified Butcher (MB) 

strategy which generates initial guesses by (3.4) if 0 <, 1 and by the solution at the 

closest SIRK stage of previous step if 8 > 1. Results of Moore and Flaherty [20] sug- 

gest that WßßC is more accurate than WMF when 6 £ 1 and that the opposite is true 

when 6 > 1 and we call this the combination (CO) strategy. We use the initial data 

W0 to provide Newton guesses for each stage as a benchmark (IC) strategy. A com- 

parison of these strategies appears in Example 5.2. 

4.2 Adaptive Strategies in Space. The solution of (2.7), the error estimates 

||E°(-,a + c/Ä)||rmsr, I € Ts, and the elemental spatial error estimates 

||E*'*(-,a + C/ZOILw,/, / € ¥„ / = 1, 2, •••, N, k =-2, -1, 0, 1 are computed for 

each time step. The largest "acceptable stage," /max€rs, for which 

||E°(-,a + clmih)\\rms <, 1 is determined and the time step is advanced accordingly; oth- 

erwise the step is rejected (cf. Figure 4.1). A new grid is always generated when a 

step is rejected or when a partial step is taken. A new grid may also be generated 

with a full step when significant refinement and/or coarsening is indicated. This must 

be  done  carefully  since  frequent regridding requires  additional  assemblies  and 
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factorizations of functions and Jacobians. It also reduces the possibility of increasing 

the temporal order since such increases require two successive accepted steps with the 

same grid. However, only regridding when a step is rejected or a partial step is taken 

results in too many rejected steps and delays mesh coarsening (cf. Examples 5.1-5.3). 

Our compromise is to regrid on an accepted step when more than 50% of the elements 

should be coarsened or more than 5% should be refined. 

The spatial error estimates ||E*'*(-,a + CJ/OIUJ,;, I € ms, i = 1, 2, •■•, N, 

k = -2, -1, 0, 1, are used to generate elemental refinement indicators If*, 

i = 1, 2, •••, N, k = -2, -1, 0, 1, as described below.  Once new orders pt have been 

selected for each element, the mesh is modified so that /,- ' ' Pi 

~ 1/VN , / = 1, 2, •••, iV, and is, thus, equidistributed over the mesh. Specifically, each 

element   is   refined   by   2J    where   /    is   the   smallest   integer   larger   than 

1/p; log2(Viv7t- Pi) for refinement and / =-1 for coarsening. The mesh is 

represented as a binary tree with finer elements created by refinement regarded as 

offspring of coarser ones. Coarsening of two adjacent elements at the same refinement 

level occurs only when they have the same parent and only when the local spatial indi- 

cator associated with each element i is less than 1/(5x2^'~ ViV). 

The order selection strategy on element i is based on the size of If'0. If 

If'0 > 1/Vw , the order is changed if the sequence If*, k = -2, -1, 0, 1 is increasing 

or decreasing. If If'0 < l[(5x<N2p') and if If,_1 < l/(5xVÄT2p') the order is too high 

and may be reduced by one, i.e, pt -pi-\. Finally, if the error on element / is 

"satisfactory" but either If'1 < l/(10xW2Pi) or If ~l < 0.5/VÄT the order pt is, 

respectively, increased or decreased by one. In all other cases, the order is unchanged. 

An increase in order should result in a coarser mesh which should reduce the dimen- 

sion of the discrete system. 
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To ensure a "smooth" mesh gradation a 1-neighbor rule [4] is invoked with 

respect to step size and order; thus neighboring elements must differ in size by at most 

a factor of two and in order by at most one. The order smoothing was essential in 

solving Example 5.4. 

The above spatial refinement strategy with /*•* = \\Ex*(-,a + Cfh)\\rms t, 

k = -2, -1, 0, 1, is referred to as the base strategy and is identified by the letter B. 

Several variations of Strategy B follow and these are compared in §5. 

NG No Grid-Prediction Strategy. The grid is refined only when the prescribed error 

tolerance is exceeded. 

FP Full Prediction Strategy. The idea of predicting where spatial refinement will be 

needed in subsequent time steps was introduced by Bietermann and Babuska [5] 

who utilized pattern recognition techniques and the extrapolation of data at previ- 

ous times to predict future meshes. With SIRKs, solution information is available 

in advance of the accepted time step. In the full prediction strategy, we utilize 

spatial errors of other SIRK stages to select a grid for a subsequent time step. In 

particular, we set If* =    max J\Ex*(;a + q/OIL^- if a step is rejected or a 

partial step is taken and If* =    max   \\Ex*(-,a +clh)\\rms4 if a full step is 

taken, k = -2, -1, 0, 1. 

NP No Partial-Step Strategy. Butcher [10] indicated that partial-step capabilities 

would be dropped from future versions of the SIRK code STRIDE because of its 

limited benefits and we seek to determine whether or not this applies in a MOL 

setting.  Hence, Strategy NP uses Strategy FP but partial steps are not allowed. 

SX Szabo's Extrapolation Strategy. Szabo [26] uses extrapolation of the spatial 

errors of solutions of local degrees pt, pt - 1, and p{ - 2 to construct an estimate 

of the error for an approximation of degree pt + 1.   This is straightforward if 
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Pi > 2. When pt = 2, local solutions having degrees 2 and 1 are linearly extrapo- 

lated. When Pi = 1, we could either (i) obtain a "higher-order" solution by 

adding the spatial error estimate (cf. §3.2) to the linear solution on element / or 

(ii) construct a "lower-order" piecewise constant (pt = 0) solution using the 

value of the piecewise-linear-solution at the center.of subinterval i. Linear extra- 

polation is used in both cases. Results of both strategies were very similar and 

computations in §5 were obtained using the latter technique. We use SX with 

full prediction since this was significantly more efficient than strategies with no 

prediction. 

These /zp-refinement strategies are compared with several /i-refinement strategies 

and a p-refinement strategy. The A-refinement strategies use the Strategy B with p 

fixed at 2, 3, 4, and 12. We refer to these strategies by their value of p. The p- 

refinement strategy uses a fixed uniform grid with p varying according to Strategy B 

and the proviso that p is increased by one when mesh refinement is needed on an ele- 

ment.  Coarsening leads to a decrease of p by one. 

A slight modification of Strategy B is used to select an initial grid for all ftp- 

strategies. Beginning with an initial uniform grid of 20 elements and uniform order 

p = 3, up to ten iterations of the p-refinement algorithm just discussed are executed 

using Szabo's [26] ^-refinement criterion. Elements that become linear during this 

process remain so; thus, there is no need for extrapolation. The iteration is continued 

until either the appropriate tolerance is satisfied on each element or the maximum 

number of iterations is reached, //-refinement is performed on the last iteration to get 

the initial grid. 

Initial conditions between meshes of different dimension are obtained by first 

interpolating nodal values to the new mesh to obtain the piecewise linear approxima- 

tion  and   then  using   a  simplified  energy  projection  to  obtain  the  higher-order 
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coefficients.   This procedure which only requires local computations, and is motivated 

by the following lemma. 

Lemma 4.1. Let q(x) e tf'+1(Q) and Q(x) e 5Afl with pt =p, i = 1, 2, ■■;N, be 

such that 

Q(xi) = q(xi), (4.3a) 

{q' ~ Q'N'\ = 0,   for allF € S0'
(*' ~x"\ (4.3b) 

where 

Xi 

(W\V% = j W\x)V'{x)ax,   i = 1, 2, -, N. (4.3c) 
Xi-l 

If kt = X} - ^_j and £max =  max x- - x._, then 

^(•)-ß(0lli^C^ax (4.3d) 

where C is independent of the grid. 

Proof.   Let W(x) e s|'(JC< "H i.e., W(*/-i) = q{Xi_x) and W(JC,) = q{Xi).   Setting 

y = w - Q e 5SA "JC-l) and using (4.3b) 

W ~ W'Wli = W ~ Q'Wli + IIHloV (4.4) 

Local Sobolev-space norms ||-||p>/ are defined as their global counterparts [23] but are 

restricted to a subinterval (x,-.^-).  Neglecting the last term in (4.4) gives, 

W ~ ß'llw * II?' - W%,   for all W e s|'(x< " H (4.5) 

Choosing W(x) €   S£' '     '_1   to be be an interpolant and using standard estimates 

[23] yields 

\b'- Q% * Ckptolfo (4.6) 

where C is independent of kt.   Conditions (4.3) and use of the Schwarz inequality 

imply 
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\\q -Q\\l Z CkpWqWlt,   i = 1, 2, -, AT. (4.7) 

The result (4.3d) follows from a summation over i. D 

A strategy similar to that used with BDF codes (cf., e.g., Shampine and Gordon 

[24]) is used to eliminate the need for a user-prescribed initial time step and order. 

The method begins with an order one SIRK, and increases the order by one and dou- 

bles the time step on successive steps until the tolerance is violated. Unlike Shampine 

and Gordon [24] instead of ending this initial integration phase if the temporal error is 

too large on the first time step, we make a second attempt with a time step selected to 

reduce the temporal error to 1/20 of the tolerance. This greatly improved the perfor- 

mance of the initial phase integration by allowing us to use higher-order methods in 

time more quickly than with Shampine and Gordon's [24] algorithm. To compare the 

two we also consider an additional Strategy ES. 

ES   No Extra Startup Strategy. Strategy FP is used with Shampine and Gordon's [24] 

initial integration strategy. 

//-refinement is not allowed during this initial phase; thus, this phase could end prema- 

turely if the initial mesh is inadequate. 

5. Computational Results. Results of four examples demonstrate the perfor- 

mance of the adaptive h- and /zp-refinement procedures. The first three examples are 

used to compare the various spatial refinement strategies; temporal enrichment remains 

invariant except for the acceptance or rejection of partial steps and the initial integra- 

tion phase. Experimentation is restricted to the /^-refinement strategy in space (except 

where noted) since the properties of variable order-variable step SIRKs have been 

investigated elsewhere [8]. The latter two examples indicate that our general-purpose 

software can be used to solve realistic problems with no user intervention. All compu- 

tations were performed in double precision on SUN 4/380 and SPARCstation II works- 

tations.  All timings were performed on SPARCstation II workstations. 
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Computational effort was measured by either (i) the total number of space-time 

unknowns including those for the error estimates or (ii) the CPU time to integrate to 

time T. For Strategy SX, the third solution (3.10) with k = 1 was not needed and this 

is reflected in the number of unknowns and the CPU time. 

Example 5.1.  Consider the linear heat conduction equation 

ut +f(x,t) = uxx,   0<*<1,   r>0, (5.1a) 

with f(x,t), the initial data, and the Dirichlet boundary conditions chosen so that the 

exact solution is 

u {x ,t) = 2.4tanh75(x + 1.4/ - 1.4) - 2tanh 100(x - / - 1/4). (5.1b) 

Thus, the solution represents two steep wave fronts moving in opposite directions that 

interact and pass through each other. 

We solved this problem f or 0 < r £ 0.7 with atol = 0.05/5*, k = 0, 1, •••, 8, and 

rtol = 0 using the various h- and /^-refinement strategies of §4. The global errors in 

the H1 norm at / = 0.7 are presented as functions of the number of unknowns in Fig- 

ure 5.1. 

It is clear that Strategy FP is superior to the Ä-refinement Strategies 2, 3, and 4 

even for large tolerances. The /z-refinement Strategy 12 offers slightly better perfor- 

mance as a function of the number of unknowns but it frequently failed to reduce the 

error sufficiently when the tolerance was reduced. Since A-refinement only changes 

the number of elements by an integral amount, an order-12 method can drastically 

reduce the local error; thus, satisfying accuracy requirements for several tolerances. 

Strategy p was not able to solve (5.1) when atol = 0.05/57 and 0.05/58. 

The adaptive /ip-refinement strategies, shown at the right and bottom of Figure 

5.1, all produce comparable results for the larger tolerances and errors. Lower-order 

SIRKs are used with larger tolerances and any partial steps that are taken are only a 
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Figure 5.1. Global errors in the H1 norm at / =0.7 for Example 5.1 as a 
function of the number of unknowns for the Strategies FP, 2, 3, 4, 12, p, 
(upper left), and B, FP, SX, NP, NG, and ES (upper right). Global errors in 
the H1 norm at t = 0.7 for Example 5.1 as a function of the CPU time for 
the Strategies B, FP, SX, NP, NG, and ES (bottom). 
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Figure 5 2. Grid and order used in solving Example 5.1 with Strategy FP 
with atol = 0.01. Temporal order is indicated by greyscale, and spatial ord- 
er by height. r 
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No. of stages 1 2 3 4 5 6 7 8 
atol 

Ü.Ü1/51 2,0 1,U 1,0 1,0 136,1 Ü 0 0 
0.01/52 2,0 1,0 1,0 1,0 1,0 168,1 0 0 
0.01/53 2,0 1,0 1,0 1,0 1,0 205,0 25,2 0 
0.01/54 2,0 1,0 1,0 1,0 1,0 263,0 43,3 0 
0.01/55 2,0 1,0 1,0 1,0 1,0 251,0 33,0 69,1 
0.01/56 2,0 1,0 1,0 1,0 1,0 329,0 158,20 7,3 
0.01/57 2,0 1,0 1,0 1,0 1,0 123,0 188,16 168,12 
0.01/58 2,0 1,0 1,0 1,0 1,0 10,0 114,1 361,21 

Table 5.1. The number of time steps and the number of partial time steps 
taken as a function of the number of stages and tolerance when Strategy FP 
is applied to Example 5.1. 

atol 
Strategy 

0.01 0.01/51 0.01/52 0.01/53 0.01/54 0.01/55 0.01/56 0.01/57 0.01/55 

FP 
NG 

1.4% 
4.0% 

0.7% 
9.4% 

0.6% 
6.2% 

0.4% 
5.3% 

0.6% 
3.0% 

0.3% 
3.6% 

0.4% 
4.9% 

0.2% 
3.3% 

0.6% 
2.1% 

Table 5.2. Percentage of rejected steps when Strategies FP and NG are ap- 
plied to Example 5.1. 

small fraction of a potential full step. However, when the higher-order SIRKs are used 

with the smaller tolerances, there is a clear advantage of the partial-step strategies 

(e.g., FP and SX) relative to Strategy NP. Partial steps with the higher-order SIRKs 

may be as much as 40% of a potential full step. Table 5.1 indicates the number of 

time steps and the number of partial time steps that were taken at each SIRK order and 

each tolerance for Strategy FP. These results verify that the higher-order SIRKs are 

taking a sizable number of partial time steps. 

At the smaller tolerances, Strategies FP and SX are clearly superior to B; thus, 

the ability to predict a future mesh is a definite advantage. Strategy ES is slightly less 
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efficient than FP at the smallest tolerances, but is otherwise comparable. Strategy NG 

has an undesirable erratic behavior as the tolerance is varied. Finally, the two com- 

plexity measures are comparable with Strategy SX being the most efficient relative to 

CPU time. 

The percentage of rejected steps is shown as a function of tolerance for Strategies 

FP and NG in Table 5.2. Once again, the ability to predict future grids is valuable and 

has reduced the number of rejected steps. 

The grid used to compute the solution using Strategy FP with atol = 0.01 is 

shown in Figure 5.2. The grayscale indicates the temporal order used and the height 

(p axis) indicates the spatial order. The grid and method order both track the steep 

fronts. After interaction, the fine grids separate following the individual waves. In 

this example the temporal order quickly climbs to five (during the initial phase) and 

remains there throughout the integration. 

Example 5.2. Consider Burgers' equation 

ut +uux=euxx,   0 < x < 1,   t > 0, (5.2a) 

where e and the initial and Dirichlet boundary conditions are chosen so the exact solu- 

tion is 

u(x,t) = l-2tanh81(x - t + 1.3). (5.2b) 

This solution is, once again, a steep wave traveling in the positive x direction as time 

increases. 

We solved this problem for 0 < t <. 1.0 with atol = 5x 10"*, it = 0, 1, •••, 7, and 

rtol = 0 using Strategy B and the time extrapolation strategies described in §4.1. The 

error in the H1 norm is presented as a function of the number of unknowns in Figure 
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5.3. The three Strategies BBC, MF and CO are comparable for all but the smallest 

tolerance where BBC performs slightly better. Strategies IC and MB performed 

significantly worse than the other three. The optimal Newton initial guess strategy is 

dependent on both the problem and on the adaptive method used to solve it. 

We also solved (5.2) for the same time interval and tolerances with the hp- 

refinement strategies of §4 and the "best" temporal extrapolation strategy. In the case 

of Strategies B, FP, SX, and NG, the best Newton guess strategy is BBC while NP 

works best with MF. The results, given in Figure 5.4, indicate that Strategies FP and 

SX are again clearly superior to NP and B. Strategy NG uses fewer unknowns for 

small tolerances but, the difference between it and Strategy FP as measured in CPU 

time is not significant. As in Example 5.1, Strategy NP is comparable to FP and SX 

for the large tolerances but becomes less efficient for small tolerances. Thus, accept- 

ing partial steps seems to be beneficial when solving partial differential equations to 

high accuracy. Strategies ES and FP produce identical results for this problem. In 

Table 5.3, we again verify that Strategy NG has rejected a larger percentage of steps 

than Strategy FP. 

Example 5.3.  Consider the Brusselator problem with diffusion [15] 

u, - 1 - u2v + 4.4« = eiiju, (5.3a) 

v, - 3.4w + u2v = ev^,   0 < x < 1,   t > 0, (5.3b) 

u (x ,0) = 0.5, v (x ,0) = 1 + 5* - tanh(20x )/4 - tanh(20(;c - l))/4,   0 < x < 1, 

(5.3c) 

ux(0,t) = ux(l,t) = vx(0,t) = vx(l,t) = 0,   t > 0. (5.3d) 

The boundary data prescribed for v (x,0) is consistent with (5.3d). 
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Figure 5.3. Global errors in the Hl norm at t - 1.0 as a function of the 
number of unknowns when the Newton initial guess Strategies BBC, MF 
CO, IC, and MB are applied to Example 5.2. 
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Figure 5.4. Global errors in the Z/1 norm at t = 1.0 as a function of the 
number of unknowns (left) and CPU time (right) when Strategies B FP SX 
NP, and NG are applied to Example 5.2. '     ' 
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atol 
Strategy 

0.01 0.01/51 0.01/52 0.01/53 0.01/54 0.01/55 0.01/56 0.01/57 0.01/58 

FP 
NG 

10.3% 
11.6% 

7.8% 
10.6% 

5.5% 
10.0% 

25% 
6.0% 

3.5% 
4.9% 

0.7% 
4.3% 

1.2% 
6.0% 

2.4% 
5.1% 

0.5% 
2.4% 

Table 5.3. Percentage of rejected steps when Strategies FP and NG are ap- 
plied to Example 5.2. 

We solved this problem for 0 < t <, 12.6 with 8 = 0.002 and 

atol1 = rtol1 = 0.05/5*, i = 1,2, k = 0, 1, ■■-, 8, using Strategies B, FP, NG, SX, and 

ES with Strategy BBC. As an "exact solution," we used the results obtained from 

Strategy FP with atol1 = rtoV = 0.05/513, i = 1, 2. The difference between this exact 

solution and a Strategy FP solution with atol1 = rtol1 = 0.05/512, i = 1, 2, is 

5.38 x 10"9 in H1. The Hl error is shown as a function of the number of unknowns in 

Figure 5.5. The solution components at t = 12.6 exhibit steep fronts as shown in Fig- 

ure 5.6. Unlike the previous examples, Strategy B performed better than Strategy FP 

for the larger tolerances; however, it exhibits some erratic behavior as the tolerance is 

varied. Strategy SX also exhibits some erratic behavior but is clearly superior to Stra- 

tegy FP for the smaller tolerances. Strategies FP and SX are superior to and less 

erratic than Strategies B, NG, and NP at the smaller tolerances. Apparently, using 

advanced grid information to determine ^-refinement has a smoothing effect on the 

convergence rate of the method. Strategies FP and SX also benefit from our modified 

initial integration phase. 

The grid and method order used to calculate the solution on 0 < t <, 12.6 of (5.3) 

using Strategy FP with BBC and atol1 = rtol1 = 0.01, / = 1, 2, is shown in Figure 5.7. 

As in Example 5.1, the finest grids and highest order elements are concentrated near 
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Figure 5.5. Global mors in the Z/1 nonn at t = 12.6 as a function of the 
number of space-time elements when Strategies B, FP, NG, SX, and ES with 
BBC are applied to Example 5.3. 
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Figure 5.6.  Solution components u (left) and v (right) at / = 12.6 obtained 
using Strategy FP with BBC and atol1 = rtoV = 0.05/55, i = 1, 2. 
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Figure 5.7. Grid and order used for Example 5.3 using Strategy FP with 
BBC and atol1 = rtol1 =0.01, i =1,2. Temporal order is indicated by 
greyscale and spatial order by height. 
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the steep fronts. 

Example 5.4.  Consider the model of shear band formation introduced by Drew 

and Flaherty [12] 

ut - v = 0,   v, = [G {T)ux]x + vJRe, (5.4a,b) 

Tt - (vx)
2/Re = TJiPrRe),    0 < x < 1,    t > 0, (5.4c) 

G (T) = 1/2[(1 + G„) - (1 - GM)tanh((7-7m)/AT)], (5.4d) 

u(x,Q) = v(x,0) = T(x,0) = 0,   0 <x < 1, (5.4e) 

v(o,o = o,v(i,o = v(o,r(o,o = o,r(i,o = o, '>o. (5.4f) 

This system describes the simple shearing of a slab of material having unit thickness. 

The variables u, v, and T denote the displacement, velocity, and temperature of the 

material point at the position x and time t. The shear modulus G depends on tem- 

perature according to (5.3d); thus, when 0 < AT < 1 the material undergoes a phase 

transition at the temperature Tm with the shear modulus abruptly changing from unity 

to GM. One edge (x = 0) of the slab is held fixed while the other (x = 1) is subjected 

to a shearing velocity V(t). When V(t) varies slowly, the velocity v is approximately 

a linear function of x; however, if V(r) varies rapidly and the Prandtl number Pr and 

Reynolds number Re have appropriate values, the deformation will be localized in a 

narrow region called a shear band. Drew and Flaherty's [12] model (5.4) omits physi- 

cal considerations which have been included in studies by Wright and Walter [28] and 

Walter [27]; however, (5.4) serves to illustrate that difficult nonlinear systems can be 

solved without a priori knowledge of solution behavior. 

Consider a problem [12] with 
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V0(tlr), Q<t<r 

vo> r <d -r 

V0(d-t)lr, d-r<t<d (5l4g) 

0, d < t. 

The initial shearing velocity initiates a wave that propagates through the solid medium. 

The unloading at t = d - r sends a second wave through the material. The passage of 

these waves generates heat which reduces the shear modulus. Sufficient heat can 

cause a phase transition to occur which can localize the deformation. In order to illus- 

trate this, we performed a computation with Re = 100, Pr =50, G«, = 0.05, 

Tm = 0.03, Ar = 0.01, V0 = 0.5, d = 1.5, and r = 0.05 and solved (5.4) for 

0 <. t <> 3.24 with tolerances atol1 = 0.01 and rtoV =0,i= 1, 2, 3, using Strategy FP 

with BBC. Solutions are shown as functions of x for t = 0.18, 0.47, 0.78, 1.16, 1.46, 

1.69, 1.95, 2.18, 2.65, and 3.08 in Figure 5.8. The space-time grid used for this calcu- 

lation is shown in Figure 5.9. With this data, the temperature rises rapidly and a shear 

band forms in a layer adjacent to the loaded edge {x = 1). The grid is concentrated in 

the shear band region and follows its evolution into the domain. Initial orders increase 

quickly and then decrease where they are not needed for accuracy. 

6. Discussion. We present and compare several adaptive /^-refinement strategies 

for solving parabolic systems. This investigation is much more extensive than previ- 

ous studies [3, 19] which used larger tolerances and no grid prediction. It also unifies 

spatial and temporal enrichment to a much higher degree than was done previously. 

Spatial /zp-refinement provides significant improvements in efficiency relative to h- 

refinement with either low- or moderate-order methods. 

The differences in efficiency between the various Ap-refinement strategies in 

space are not as great.  Taking partial steps offers some advantages with small toler- 
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Figure 5.8. Displacement (upper left), velocity (upper right), and tempera- 
ture (bottom) as functions of x for Example 5.4 at several times usins FP 
with BBC and atoV = 0.01, rtoV = 0, i = 1, 2, 3. 

ances and high-order methods. Grid prediction (Strategies B, FP, and SX) leads to a 

smoother relationship between the error and tolerance than no prediction (Strategy 

NG). Although Strategy SX outperformed Strategy FP in almost every case, indicating 

that extrapolation of low-order solutions can produce adequate indications of high- 

order error, it did exhibit some erratic behavior for large tolerances in Example 5.3. 

Further investigation is needed to clarify which is the better approach.  In most cases 
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the number of unknowns and CPU time were comparable measures of work. How- 

ever, there were exceptions in Example 5.1 with Strategy SX and in Example 5.2 with 

Strategy NP. 

The three strategies for computing initial guesses for Newton's method, BBC, 

MF, and CO, were comparable with the best Newton guess strategy being dependent 

upon the adaptive strategy (cf. Example 5.2) and, clearly, the problem as well. The 

grids and orders selected according to Strategy FP successfully track important solution 

features. Examples 5.3 and 5.4 indicate that the adaptive /^-refinement strategies can 

robustly solve some difficult nonlinear systems with no user intervention. 

Although no attempt was made to control the global temporal error, it appears 

that we have done so to a high degree. With stiff ordinary differential systems, such 

as those arising here, local errors do not accumulate [13, 17]; hence control of global 

errors is accomplished simply by controlling local errors. 

Several issues remain. An alternative spatial error estimation strategy which 

involves solving local elliptic problems rather than local parabolic problems has been 

implemented in a MOL code which uses BDF formulas in time [3]. Reported gains in 

efficiency could be even greater with SIRKs since spatial error estimates are needed 

only at certain stages for the particular adaptive strategy used. Theoretical analysis of 

these estimates with SIRKs was done by Moore in [21] to show that they produce 

asymptotically correct results. A comparison of SIRK and BDF methods must be 

done. The BDF-based methods may outperform SIRKs at the larger tolerances but this 

may not be so for smaller tolerances. The strategies and software developed herein 

will be most helpful in developing multi-dimensional techniques. 
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Figure 5.9. Grid on 0 £ t <. 3.24 (left) and order on 0 <; t <. 0.38 (right) used 
for Example 5.4 using Strategy FP with BBC and atol1 = 0.01, rtol1 = 0, 
i = 1, 2, 3. Temporal order is indicated by greyscale and spatial order bv 
height. J 
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